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Flow in heated curved pipes 
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The fully developed laminar flow in a heated curved pipe under the influence of both 
centrifugal and buoyancy forces is studied analytically. The pipe is assumed to be 
heated so as to maintain a constant axial temperature gradient. Both horizontal and 
vertical pipes are considered. Solutions for these two cases are obtained by regular 
perturbations in the Dean number and the product of the Reynolds and Rayleigh 
numbers; the solutions are therefore limited to small values of these parameters. 
Predictions of the axial and secondary flow velocities, streamlines, shear stress, 
temperature distribution and heat transfer are given for a representative case. 

1. Introduction 
Owing to  its wide application in various engineering devices and a variety of 

physiological flow situations, both natural and artificial, the flow in a curved pipe has 
been extensively studied. Recently, the possibility of sodium-water fires in the 
secondary heat exchangers of liquid-metal fast-breeder reactors has necessitated 
further study of the problem with heat transfer. 

We briefly review here the work in this area, both theoretical and experimental 
(e.g. see Eustice 191 1 ;  Taylor 1929). Dean (1927, 1928) found that flow in curved pipes 
can be correlated by a single non-dimensional parameter: the Dean number, which is 
defined as D = 2aRe2, where Re is the Reynolds number based on the average axial 
flow velocity and the radius a of the pipe and a = a/R is the curvature ratio of the 
pipe; see figures l ( a )  and ( b ) .  Physically, this parameter can be considered as the ratio 
of the centrifugal force to the viscous force. A regular asymptotic solution was derived 
by Dean as a perturbation of the parabolic velocity profile in a straight tube. His 
analysis was restricted to small values of D.1 This work has been extended numerically 
to moderate values of D using Fourier series by McConalogue & Srivastava (1968) 
and a finite-difference solution has been obtained by Greenspan (1973); the most 
recent and probably most accurate numerical solution is that of Collins & Dennis 
(1975). Earlier, Barua (1963) developed a crude asymptotic boundary-layer theory for 
large values of D. The physical reasons for the differences between the flow in curved 
pipes for small and large D has been clearly described in the studies of the entrance 
flow in curved pipes by Singh (1974) and Yao & Berger (1975) and that of the entrance 
flow in heated straight pipes by Yao (1977). 

t Present address : Department of Mechanical and Industrial Engineering, University of 
Illinois, Urbana, Illinois. 

1 Dean’s series solution has recently been extended by computer to 24 terms (Van Dyke 1978). 
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transfer problem in a heated curved pipe. However, it  has been demonstrated by 
Morton (1959) that the buoyancy force in a heated straight pipe can induce a secondary 
flow which depends on the non-dimensional parameter ReRa, the ratio of the buoyancy 
force to the viscous force, where Ra is the Rayleigh number. In the study by Mori & 
Nakayama (1965) the buoyancy force was neglected. This restricts their solution to 
cases for which D is large but ReRu is very small. 

In  this paper, we study the flow in heated curved pipes under the influence of both 
centrifugal and buoyancy forces in order to gain insight into the flow pattern, local 
shear-stress distribution and heat-transfer mechanism, sufficiently far from the pipe 
entrance to avoid inlet-length effects. The pipe is heated uniformly so that a constant 
temperature gradient 7 is maintained in the direction of the axis. Two cases are 
studied: a horizontal curved pipe (figure 1 a )  and a vertical curved pipe (figure 1 b) .  For 
a horizontal curved pipe, the directions of the centrifugal force and the buoyancy force 
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are not coplanar and therefore the two vortices generated by the secondary flow are 
skewed. For a vertical curved pipe, the centrifugal force and the buoyancy force are 
coplanar, however it is not necessary that they be in phase. 

The problem is solved by carrying out a regular perturbation in the parameters D 
and ReRa. The practical limits on the sizes of these parameters is discussed in the text. 
The analysis is not restricted by limits on Pr and Re; however Re must not be so large 
as to  make the flow not laminar or t o  make the product ReRa exceed the limit imposed. 

2. Horizontal curved pipe 

governing equations of motion and energy in toroidal co-ordinates (fignre 1 a) are 
For a horizontal heated curved pipe whose axis is perpendicular to gravity, the 

1 a(?%) 1 au Usin$+Ecos$ 
-- + 7 -  + = 0, r ar r a $  R+Fsin$ 

- - I  az, a@ V aw W ( u  sin $ + v cos @) 
ar R+Fsin$ p( R + i; sin $) 3 - u-+=-+ 

r 
(R+rsin@)=- +-5 f iO[R+isin$%])' 

The buoyancy forces are approximated by the Boussinesq form in these equations. 
The fourth terms on the left-hand sides of (1 6)  and ( 1 c) are centrifugal forces, which 
will throw the fluid particles in the core from the inside of the bend to  the outside. 
Without the buoyancy forces, the centrifugal forces would force the secondary flow 
into two horizontal vortices, the line of symmetry being a horizontal line. The fifth 
terms on the left-hand sides of (1 b )  and (1 c) are the buoyancy forces, which will make 
the fluid in the core move downwards and lead to two vertical vortices. Thus the 
combination of the centrifugal forces and the buoyancy forces generates two vortices 
whose line of symmetry intersects the direction of gravity a t  a finite angle. Also, the 
line of symmetry is no longer a straight line when both body forces act on the fluid 
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particles. When ReRa and D are small the length scale necessary for flow in a heated 
curved pipe to  become fully developed is aRe, the same a,s for an unheated straight 
pipe. We now introduce the following non-dimensional variables: 

.F = ar, R8 = (aRe) 0 (co-ordinates), 

ut = e w ,  U = ( v / a ) u ,  V = (v/a)v (velocities), 

p = p W,“p (pressure), 

T = T, - TU Pr O(r ,  $), 

D = 2aRe2, Ra = (/3g&/v2) Pr, Re = K a / v ,  
T, = To + T ( R ~ )  (temperature), 

where a is the radius of the pipe, 7 is the temperature gradient along the pipe, Pr is the 
Prandtl number, W ,  is the velocity a t  r = 0, T,is the wall temperature, Tois the reference 
wall temperature, /3 is the thermal expansion coefficient and v is the kinematic viscosity. 
Substituting ( 2 )  into ( l) ,  neglecting terms O(a)  and smaller, and eliminating the 
pressure terms between (1 b,  c)  by cross-differentation gives the following set of 
equations: 

where 

- ~ ( ~ c o s + - - - s i n +  2 ar r laW2 a+ ) , 

a(A,B)  aAaB aA aB ___ =----- 
a(r,$) ar a@ a$ ar 

and f is the non-dimensional stream function, defined by 

u = - r-l af/a@, v = af/ar. 

The appearance of the factor Re in the second term of ( 3  c) simply reflects the fact that  
the wall temperature rises linearly on a length scale aRe, which is the distance over 
which the flow becomes fully developed. 

The boundary conditions are 

u ,v ,w ,O  = 0 at  r = 1, 
u, v, w, 0 finite at r = 0. (4) 

Although solution of (3)  subject to (4) is a matter of considerable difficulty, successive 
approximations to the solution can be determined by expanding w, f and 0 as power 
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series in the Rayleighnumber and the Dean number when both are small. Accordingly, 
suppose that 

w = W ,  + (Raw,, + Dw,,) + (Ru~w,, + RuDw,, + D2w2,) + . . . , 
f =  (Raf10+Df11) + (RaY20 +RaDf,,+ DY22)+ * . * )  ( 5 )  

0 = 0, + (RaO,, + DO,,) + (Ra20,, + RaDO,, + D20,,) + . . ., 
noting that the leading term fo must vanish because there is no circulation when Ra 
and D are zero. 

Substitution of ( 5 )  into (3) and collection of terms of equal order gives: 

V2,w0+ 4 = 0, V2,O,+ Rew, = 0 

from terms of order zero; 
a COS@ a 
ar r a$ v:flo = (sin @- +- -) o,,, 

1 a(f10,  wo) v ; w  - -  
lo - r a ( r , @ )  ’ 

V:  O,, + Rew,, = - Pr a(f10, 0,) 
r a(r ,@)  

from terms of order Ra;  

1 a(f1l) wo) v; Wll = - 
r a(r,@) 

V: O,, + Re w,, = - Pr a(fll9 0 0 )  

r a@)@) 
from terms of order D ;  

from terms of order Ra2; 

a(flo7 V?f l l )  + a(f11, W l O )  

wowlo, 
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from terms of order RaD; 

from terms of order 0 2 .  

Equations (6)  are those for a fully developed straight flow without density stratifica- 
tion. Equations ( 1  0) represent the effects of the interaction of the centrifugal forces 
and the buoyancy forces. Equations of still higher orders can be obtained systematically 
as outlined above. The solutions of the above equations satisfying (4) can be deter- 
mined straightforwardly by the method of separation of variables. The effect of the 
centrifugal force, as demonstrated by Dean (1928)' and the effect of the buoyancy 
force, as illustrated by Morton (1959), on the total flux and heat transfer can be ignored 
to  first order: these effects first start to  show up in the second-order approximation. 
However, the solutions of these authors are limited to the cases when D or ReRa is 
small, therefore their correlations have limited practicality. For the purpose of studying 
flow patterns, local heat transfer and shear stress the solutions obtained from the first- 
order approximation are sufficient, and the results will be valuable in gaining insight 
into the problem and for future studies of the flow when D and ReRa are large. The 
three-term series solutions for the first-order approximation are presented below. 

The solution of (6)-(8) satisfying (4) can be written in separable form as 

w = wo(r) + ReRaGlo(r) cos $ + DGl,(r) sin $, 

f = ReRuflo(r) sin $ + Dfll(r) cos $, 

0 = Oo(r) +ReRa@,,(r) cos $ + D@,,(r) sin $. 

(12 a) 

(12 b )  

(12 c) 

The equations governing the r-dependent functions in (12) are obtained in the usual 
straightforward manner and we do not bother to  list them here. Their solutions can be 
obtained simply and are as follows: 

Re 
w o =  l - + )  0 -- - 16 (l-r2)(3-r2); (13 a)  

1 
184320 

= - r( 1 - r2) (49 - 51r2 + 1 9r4 - r6) ,  

- Re 
@"(') = 221 18400 

[(381+ 1325Pr)~-(735+3000Pr)r3+(500+2600Pr)r5  

- (175 + 1 125Pr) r7 + (30 + 202Pr) r9 - (1  + 2Pr) +]; 
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r( 1 - r2) (19 - 21r2 + 9r4- re),  
- 1 

- Re 
Ol,(r) = - [(1-2166+4-2916Pr)r-(2-375+ 10Pr)r3 

W l l ( r )  = - 23040 

23040 

I 

I + (1*6667+9-1667Pr)r6- (0.625+4-375Pr)r7+(0.125+Pr)re 
- (0.0083 + 0-083Pr) r l l ] .  

3. Vertical curved pipe 
The directions of the centrifugal forces and the buoyancy forces are coplanar in this 

case, however the magnitude of the buoyancy forces varies as cos 8 (figure 1 b). There- 
fore fully developed flow in a heated vertical curved pipe varies periodically; its 
periodicity is 277, coinciding with the periodicity of the cosine function. Referring to 
figure 1 (b), the equations of motion can be expressed as 

1 a(ru) 1 av Zsin$-Ecos$ 
+x-+ = 0, (14 a) r ar r a $  R - ~ C O S $  

-- 

i a ( l a w  - wsin$ ) ]  +=- =-- 
r a$ r a$ R-rcos$ ’ 

K a -  a (R-?cos$) aT 
r(R-Fcos$)- +- F ]  a $ [  r 

- - 
r(R-rcos$) [% [ 

where 8 is the angle measured from the upward vertical. 

pipe. However, the length scale along the axis of the pipe is 
The non-dimensional variables are similar to the ones used for the flow in a horizontal 

(15) 

This equation is an expression of the physical fact that the flow becomes fully developed 
at  a distance O(aRe) from the entrance of the pipe and that local flow changes due to 

Re = aRe0 + R8. 
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the periodic buoyancy forces are based on the reciprocal of the curvature of the curved 
pipe. By the definition of fully developed flow, the dependence of the flow on 8 should 
be diminished. It can be shown that the dependence on 8 is of higher order, O(aRe), and 
can be neglected when D and ReRa are small. In  other words, the flow varies in phase 
with the buoyancy forces. Substitution of the non-dimensional variables given in (2) 
and (15) into (14) and elimination of the pressure terms between (14b, c) yields 

The perturbation equations are obtained by substituting the series (5) into (16) and 
up to first order are 

VZ,w0+4 = 0, V2,0+Rew0 = 0; 

a COB$ a v:flo = (sin $ - + - -) O, cos 6, 
ar r a$ 

The solutions which satisfy ( 4 )  can be expressed as 

w = w, + [ReRaG,,(r) cos 8 - DGll(r)] cos $ + . . . , 

f = 

0 = 0, + [ReRaB,,(r) cos 8 - DGll(r)]  cos $ + . . . , 

(18 a )  

(18 b )  

(18 c) 

- [ReRafl,(r) cos 8 - Dfll(r)] sin $ + . . . , 

where the barred functions on the right-hand sides are the same as in (13). The solutions 
(18) show that the buoyancy forces enhance the effect of the centrifugal forces along 
the lower half of the curved pipe (90" < 8 < 270") and reduce the effect of the centri- 
fugal forces along the upper half ( - 90" < 8 < 90"). 

4. Results and discussion 
The solutions presented for horizontal and vertical curved pipes are nominally 

limited to the cases when D and ReRa are both small. A comparison by Dean (1928) of 
various terms in his perturbation solution for a curved pipe and a similar comparison 
by Morton ( 1959) for a heated pipe suggest that  the present solution should be valid for 
D 5 500 and ReRa 5 3000. The results presented below are for the representative case 
D = 300 and ReRa = 1000. (The solution is valid for arbitrary Pr. In the representative 
case we use the value Pr = 1. )  
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r =  1 

r=C 

r =  

FIGURE 2. (a) Axial velocity profiles and ( b )  contour of maximum axial 
a horizontal curved pipe (ReRa = 1000, D = 300). 

velocity for 

Axial velocity 
The axial velocity profiles w in the horizontal curved pipe are given in figure 2(a). The 
point of maximum axial velocity is displaced from the central axis of the pipe and 
occurs a t  approximately $ = 40°, r = 0.25. I n  figure 2 ( b )  the contour of the maximum 
axial velocity is symmetric about the line 40’-220°, which indicates that the dividing 
streamline of the two vortices will lie in the neighbourhood of this line. 
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90" 

FIGURE 3. (a)  Axial velocity profiles and ( b )  contour of maximum axial velocity for 
a vertical curved pipe (ReRa = 1000, D = 300). 

A similar plot of the axial velocity profiles in the vertical curved pipe is given in 
figure 3 (a). At the top of the curved pipe (6 = O O ) ,  the axial velocity profile deviates 
only slightly from the Poiseuille profile. This is because of the opposing effects of the 
buoyancy force and the centrifugal force. The maximum velocity point will move 
towards the outside of the bend (II. = lSOo) when the magnitude of the buoyancy force 
is less than the centrifugal force and towards the inside of the bend when the buoyancy 
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r = (  

r =  I - 

- 3  - 2  - 1  0 1 2 3 
U 
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U 

FIQURE 4. Secondary flow velocity profiles in (a) a horizontal and 
(b) 8 vertical pipe (ReRa = 1000, D = 300). 

force is dominant. On the middle plane of the curved pipe (8 = go"), where the 
buoyancy force is perpendicular to the centrifugal force, the maximum velocity point 
is displaced towards the outside of the bend owing to the centrifugal force. A t  the 
bottom of the pipe (8 = 180°), where the centrifugal force and the buoyancy force 
enhance each other, the point of maximum velocity also moves towards the outside 
of the bend. Physically, the distortion of the axial velocity profile is due to the displace- 
ment effect of the secondary boundary layer, as has been demonstrated by Yao (1977). 
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FIGURE 5. Streamlines in a horizontal curved pipe (ReRa = 1000, D = 300). 

The coiltour of the maximum axial velocity for the vertical curved pipe is given in 
figure 3 (b) ,  which clearly shows that the line of symmetry of the two vertical vortices 
is 0°-180". 

Secondary Pow velocity profiles and streamlines 

The secondary flow velocity profiles v are presented for the horizontal curved pipe 
in figure 4(a) and for the vertical curved pipe in figure 4(b). For the vertical curved 
pipe, the secondary velocity is zero along the symmetry line (Oo-l8O0). However, the 
secondary velocity does not vanish along the line 40"-220" in the horizontal curved 
pipe. This is because the dividing streamline is not straight. The closer the dividing 
streamline is to 40"-220", the smaller is the difference between the magnitudes of the 
buoyancy force and the centrifugal force. The dividing streamline will be close to 
0"-180° when the buoyancy force dominates; i t  will be close to 90°-270" when the 
centrifugal force is dominant. The stream functions (12b) and (18b) are plotted in 
figures 5 and 6. In  figure 5 the skewness of the dividing streamline has been identified 
by comparing it with the straight line 40"-220". 

Shear stress 

The axial shear stress is proportional to the value of awlar at r = 1, which can be 
determined from (12a)  and (18a). Therefore for the horizontal curved pipe 

D 
cos ~ - 1920 sin @ 

ReRa - -2-- 
r-1 57 60 

The location of the maximum (or minimum) axial shear stress can be shown from (19) 
to be a t  

@ = tan-l(3D/ReRa). (20) 
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2 7 0  

180" 

270" 

0" 

180" 

90" 

180" 
I / 

90" 2 7 0  90" 

FIGURE 6. Streamlines in a vertical curved pipe at (a) 8 = OD, 
( b )  8 = 90" and ( c )  8 = 180" (ReRa = 1000, D = 300). 

For D = 300 and ReRa = 1000, the maximum axial shear stress thus occurs at 
$ = 41.987" and the minimum axial shear stress a t  $ = 221.987". Similarly, the 
circumferential shear stress can be written as 

rT@ - [8~/8r],=, = 0*156[ - ReRa sin $ + 2 .6670  cos $1. ( 2 1 )  

Its maximum a,nd minimum values are located at  

$ = tan-1 ( - ReRa/2*667D) ,  (22 )  

which for D = 300 and ReRa = 1000 become $ = 128.683" and 308.663". 
For the vertical curved pipe, the axial and circumferential shear stresses are 

cos $ 
7,* - - 2 - -  [ReRa cos 0 - 301  

5760 

and rr,+ - - 0-0156(ReRa cos8- 2 . 6 6 7 0 )  sin $. (24) 
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0 
01 Re 

01 Re 
FIGURE 7. Temperature distribution in (a)  a horizontal and (b )  a 

vertical curved pipe (ReRa = 1000, D = 300, Pr = 1). 

It is obvious that the maximum rro occurs at 8 = 180°, $ = 0" and the maximum rrk 
a t  6 = 180°, $ = & 90". 

Temperature distribution and heat transfer 

The fluid temperature distributions are given in figures 7 ( a )  and (b) ,  for the horizontal 
and vertical curved pipes, respectively, and are seen to  be distorted in similar ways to 
the axial velocity profiles. 
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Pr max N u  min N u  

0 41.987" 221.987" 
0.001 42,133" 222.133" 
1.0 46.371" 226.371" 

10.0 47.943" 227.943" 
c13 48.190" 228.190" 

TABLE 1.  Location of maximum and minimum Nusselt number for 
D = 300and ReRa = 1000 [see (26)l .  

The Nusselt numbers can be determined from (12 c )  and (18 c ) :  

"% -- - -0~25-0~000013[(1+2~615Pr)ReRacos$+(3+8~05Pr)Dsin$], ( 2 5 a )  
Re 

-- "% - -0~25-0~000013[(1+2~615Pr)  ReRacosg-  (3+8-05Pr)D]cos$, ( 2 5 b )  Re 

where the subscript h denotes the horizontal curved pipe and the subscript v the 
vertical curved pipe. The location of the point of maximum (or minimum) heat- 
transfer rate for a horizontal curved pipe can be determined from (25  a)  to  be 

For fixed D and ReRa, the value of $ depends only on the Prandtl number and increases 
slightly when the Prandtl number increases, as shown in table 1. For Pr = 0, the 
location of maximum (or minimum) heat transfer coincides with the location of 
maximum (or minimum) axial shear stress. For P r  =+ 0, these two points are slightly 
dislocated. For the vertical curved pipe, the maximum Nusselt number occurs a t  
0 = 180", $ = 0" and the minimum Nusselt number a t  0 = 180°, $ = 180". 
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